Microfocus X-ray Sources for Chemical and High-Pressure Crystallography

Jürgen Graf

Incoatec GmbH, Geesthacht
Incoatec GmbH: INnovative COAting TEChnologies

Incoatec GmbH @ GIZT: Geesthachter Innovation and Technology Center

History and Background

• Company founded in Jan 2002

• **Spin-off** of the Department of Thin Film Technology, **GKSS Research Center**, located in Geesthacht near Hamburg

• **Joint venture** together with **Bruker AXS**

• Development and manufacturing of **multilayer X-ray optics** by **thin film technology**

• Own **application lab** and **R&D activities**

Incoatec on the GKSS Research Center, 30 km South of Hamburg
Multilayer X-ray Optics

Capture angle α

$$m \cdot \lambda = 2 \cdot d \cdot \sin \Theta$$

$d = 2 - 6$ nm

$\theta_m \approx 1.0^\circ$ (Cu-K$_\alpha$)

$\theta_m \approx 0.5^\circ$ (Mo-K$_\alpha$)

W/C Multilayer (TEM, Uni Kiel, Prof. Jäger)
Microfocus X-ray Sources

- Mirror should “see” the whole source:
 - Multilayer mirrors work best with microfocus X-ray sources

1.2 kW Microfocus Rotating Anode 30 W Microfocus Sealed Tube
Power loading of X-ray sources

Power loading in all solid-target X-ray sources is limited by heat dissipation.

- **Large spot**
 - Quasi-1D heat flow limits power density
 - ~0.5 kW/mm²
 - Rel. brightness: 1

- **Small spot**
 - 2D heat flow allows more efficient cooling
 - ~ 5 kW/mm²
 - Rel. brightness: <10X

- **Large or small spot**
 - Heat spread by rotation
 - >10 kW/mm²
 - Rel. brightness: <100X

Incoatec Microfocus Source – μS

- High-brilliance **microfocus sealed tube** X-ray source
- Spot size < 50 μm
- Low power: max. 30 W
- Air-cooled
- Family of 2D beam shaping Montel optics:
 - The Quazar Optics (focusing or parallel beam)
- Implemented in many new Bruker AXS instruments
- Upgrade on older diffractometers

- Cu, Cr, Mo and Ag radiation

> 100 sold worldwide

3 years warranty
$I\mu S$ for Mo-K_α Radiation

Beam Profile

Mo-$I\mu S$

- Relative Flux: 1

Mo-ST

- Relative Flux: 3.0

Beam profiles recorded with Mo-$I\mu S$ and 2 kW Mo sealed tube (graphite monochromator, 0.5 mm monocap)
Mo-\(\mu\)S vs. 2 kW Mo-Sealed Tube

- Flux through pinholes with different diameter (calibrated PN diode)
Mo-\(\mu\)S vs. 2 kW Mo-Sealed Tube

\(P2_1, \: Z = 2, \: \mu = 0.10 \text{ mm}^{-1}\)

<table>
<thead>
<tr>
<th>Source</th>
<th>Mo-(\mu)S</th>
<th>Mo-ST</th>
<th>Mo-(\mu)S</th>
<th>Mo-ST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposure [s/0.3°]</td>
<td>30</td>
<td>90</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>< (I>_{\text{norm}} #)</td>
<td>139</td>
<td>7.3</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>< (I/\sigma >)</td>
<td>15.3</td>
<td>10.7</td>
<td>37.6</td>
<td>30.4</td>
</tr>
<tr>
<td>(R_{\text{int}})</td>
<td>0.039</td>
<td>0.062</td>
<td>0.021</td>
<td>0.023</td>
</tr>
<tr>
<td>(R_1)</td>
<td>0.039</td>
<td>0.056</td>
<td>0.030</td>
<td>0.031</td>
</tr>
<tr>
<td>(wR2)</td>
<td>0.092</td>
<td>0.105</td>
<td>0.082</td>
<td>0.082</td>
</tr>
<tr>
<td>N1-C9 dist. [Å]</td>
<td>1.325(3)</td>
<td>1.325(4)</td>
<td>1.323(2)</td>
<td>1.324(2)</td>
</tr>
</tbody>
</table>

\(C_{24}H_{21}N_3O_3\)

Normalized to min/°
Conclusions:

• Mo-\(\mu\)S always superior for small crystals (< 0.15 mm)

• Comparable results for larger crystals (> 0.20 mm), often with shorter exposure times

• Precise crystal centring and scaling are essential for data quality

Got Small Crystals? – Inorganics

- Comparison **Mo-μS** vs. **4 kW Mo RAG #** plus flat graphite monochromator

<table>
<thead>
<tr>
<th></th>
<th>SiO₂</th>
<th>CuSO₄</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size [mm³]</td>
<td>0.04 × 0.04 × 0.02</td>
<td>0.07 × 0.05 × 0.05</td>
</tr>
<tr>
<td>Source</td>
<td>Mo-μS</td>
<td>FR 591</td>
</tr>
<tr>
<td>Power [kW]</td>
<td>0.03</td>
<td>4.0</td>
</tr>
<tr>
<td>Exposure time [s/°]</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>< I ></td>
<td>17.1</td>
<td>2.9</td>
</tr>
<tr>
<td>< σ ></td>
<td>1.6</td>
<td>1.1</td>
</tr>
<tr>
<td>R1</td>
<td>0.084</td>
<td>0.090</td>
</tr>
<tr>
<td>wR2</td>
<td>0.240</td>
<td>0.241</td>
</tr>
</tbody>
</table>

FR591 plus flat graphite monochromator, 0.3 mm collimator
All data recorded with a Nonius Kappa CCD goniometer
* Approximation for 30 W: < I > = 263.4, < σ > = 6.4
Got Small Crystals? – MOF

\[
P4_2/n, \ Z = 8
\]

\[
a = b = 23.69 \text{ Å}, \ c = 14.99 \text{ Å}
\]

\[
\mu (\text{Mo}) = \sim 0.5 \text{ mm}^{-1}
\]

“C\text{40}_2\text{H}_{24}\text{N}_8\text{Zn}”

\[
\text{Mo-}\mu\text{S}
\]

120 s/0.5°, APEX II
DX = 41 mm, 2\theta = 11°
Got Small Crystals? – MOF

- Typical diffraction patterns recorded with Cu-\(\mu\)S MX (FWHM = 0.12 mm)

Cu-\(\mu\)S MX

60 s/0.5°, APEX II
DX = 51 mm, \(2\theta = -32°\)

120 s/0.5°, APEX II
DX = 51 mm, \(2\theta = -93°\)
Got Small Crystals? – MOF

\[\text{Size [mm}^3\text{]} \quad 0.04 \times 0.03 \times 0.01 \]

<table>
<thead>
<tr>
<th>Source</th>
<th>Cu-(\mu)S MX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposure time [s/0.5°]</td>
<td>60 - 120</td>
</tr>
<tr>
<td>Total time [d]</td>
<td>~ 2.5</td>
</tr>
<tr>
<td>Resolution [Å]</td>
<td>0.88 (0.98 – 0.88)</td>
</tr>
<tr>
<td>< I/(\sigma) ></td>
<td>16.2 (3.4)</td>
</tr>
<tr>
<td><Redundancy></td>
<td>6.5 (2.4)</td>
</tr>
<tr>
<td>(R_{\text{int}})</td>
<td>0.0545 (0.2330)</td>
</tr>
</tbody>
</table>

\[\text{\(P4_2/n, \ Z = 8\)} \]
\[a = b = 23.69 \text{ Å, } c = 14.99 \text{ Å} \]
\[\mu \text{ (Cu)} = \sim 4 \text{ mm}^{-1} \]

\[\text{\(C_{40}H_{24}N_8Zn\)} \]
I\(\mu\)S for Ag-K\(\alpha\) Radiation

- **Ag-I\(\mu\)S:**
 - Power Settings: 50 kV, 600 \(\mu\)A
 - FWHM = 0.09 mm\(^8\); FW0.1M = 0.23 mm
 - Divergence = 5 mrad
 - At least 3x \(< I >\) of 1.5 kW Ag ST

\& Beam profiles of attenuated primary beam have been recorded @ DX = 1 cm in 4 s exposures

Jürgen Graf – Karlsruhe 2010
Strong Absorber – Murdochite

Fd-3m, Z = 4

Crystal Structure

- **Compound:** \(\text{Cu}_6\text{PbO}_{8-x}(\text{Cl, Br})_x \)

Data Collection Details

<table>
<thead>
<tr>
<th>Source</th>
<th>Ag-(\mu S)</th>
<th>Mo-(\mu S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mu) [mm(^{-1})]</td>
<td>20.6</td>
<td>38.4</td>
</tr>
<tr>
<td>Exposure [s/0.3°]</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Max. resolution [Å]</td>
<td>0.61 (0.71 – 0.61)</td>
<td>0.77 (0.87 – 0.77)</td>
</tr>
<tr>
<td>(< I/\sigma >)</td>
<td>186.8 (143.5)</td>
<td>187.7 (159.7)</td>
</tr>
<tr>
<td>(< I/\sigma > (0.77 \text{ Å}))</td>
<td>216.6 (192.7)</td>
<td>187.7 (159.7)</td>
</tr>
<tr>
<td>Unique data</td>
<td>127 (43)</td>
<td>69 (17)</td>
</tr>
<tr>
<td>(R1, wR2)</td>
<td>0.0176, 0.0450</td>
<td>0.0184, 0.0510</td>
</tr>
<tr>
<td>(U_{eq} \text{ (O1)})</td>
<td>0.0028(4)</td>
<td>0.0048(10)</td>
</tr>
<tr>
<td>(d(\text{Pb1-O1}) \text{ [Å]})</td>
<td>2.290(3)</td>
<td>2.296(6)</td>
</tr>
</tbody>
</table>

Other Details

- **Size [mm\(^3\)]:** 0.11 \(\times\) 0.09 \(\times\) 0.06
- **Unique Data:**
 - Cu\(_6\)PbO\(_{8-x}\)(Cl, Br)\(_x\)
 - Fd-3m, \(Z = 4\)
 - Strong Absorber – Murdochite

- **Note:**
 - Source: Ag-\(\mu S\), Mo-\(\mu S\)
 - Exposure: 10 s/0.3°
 - Max. resolution: 0.61 Å
 - \(< I/\sigma >\): 186.8 Å
 - \(< I/\sigma > (0.77 \text{ Å})\): 216.6 Å
 - Unique data: \(R1, wR2\)
 - \(U_{eq} \text{ (O1)}\): 0.0028 Å
 - \(d(\text{Pb1-O1}) \text{ [Å]}\): 2.290 Å
Strong Absorber – Murdochite

- Calculated $0kl$ precession patterns

10 s/0.3°, APEX II

Ag-μS

Mo-μS

10 s/0.3°, APEX II
High-Pressure Crystallography

Gabapentin Heptahydrate, $P-1, Z = 2$,

$\mu = 0.12 \text{ mm}^{-1}$

Size [mm3]

<table>
<thead>
<tr>
<th>Source</th>
<th>0.25 x 0.20 x 0.20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag-(\mu)S</td>
<td>2 kW Mo-ST</td>
</tr>
<tr>
<td>Exposure [s/0.3°]</td>
<td>20</td>
</tr>
<tr>
<td>Resolution [Å]</td>
<td>0.90 (1.00 – 0.90)</td>
</tr>
<tr>
<td>$< I/\sigma >$</td>
<td>19.6 (3.2)</td>
</tr>
<tr>
<td>Unique data</td>
<td>866 (170)</td>
</tr>
<tr>
<td>$<\text{Redundancy}>$</td>
<td>1.5 (0.9)</td>
</tr>
<tr>
<td>$<\text{Completeness}>$</td>
<td>40.6 (28.9)</td>
</tr>
<tr>
<td>R_{int}</td>
<td>0.0306 (0.1636)</td>
</tr>
</tbody>
</table>

C$_9$H$_{17}$NO$_2 \cdot 2$ H$_2$O

Gabapentin crystal in 300 \(\mu\)m gasket of Be-free DAC

Gabapentin

F. P. A. Fabbiani, Universität Göttingen

Jürgen Graf – Karlsruhe 2010
High-Pressure Crystallography

- Comparison of Ag-\(\mu\)S vs. 2 kW Mo-ST (graphite monochr.; 0.5 mm Collimator)

Gabapentin Heptahydrate, Be-free DAC (300 \(\mu\)m gasket, 0.8 GPa), Bruker AXS APEX II goniometer

Ag-\(\mu\)S

\[
\begin{align*}
&20 \text{ s/0.3°, APEX II} \\
&\text{DX} = 71 \text{ mm, } 2\theta = 0°, \omega = 0.5°, \phi = 0°
\end{align*}
\]

Mo-ST

\[
\begin{align*}
&20 \text{ s/0.3°, APEX II} \\
&\text{DX} = 71 \text{ mm, } 2\theta = 0°, \omega = 4°, \phi = 0°
\end{align*}
\]
High-Pressure Crystallography

- *Ag vs. Mo*: Gain in resolution by “Compression” of the Reciprocal Space

Gabapentin Heptahydrate, **Be-free DAC** (300 μm gasket, 0.8 GPa), Bruker AXS APEX II goniometer

\[
\text{Ag-I}\mu\text{S} \\
\begin{array}{c}
20 \text{s/0.3°, APEX II} \\
DX = 71 \text{ mm, } 2\theta = -15°, \omega = -160.1°, \varphi = 180°
\end{array}
\]
Summary

I\(\mu\)S for Mo and Ag – High flux density in small, convergent beam

• Ideal for small and medium sized crystals

• Ideal for high-pressure experiments

• Mo-I\(\mu\)S: at least 4-fold intensity gain compared to 2 kW Mo sealed tube
 - div = 5 mrad, FWHM = 0.12 mm; FW10%M = 0.30 mm

• Ag-I\(\mu\)S: at least 3-fold intensity gain compared to 1.5 kW Ag sealed tube
 - div = 5 mrad, FWHM = 0.09 mm; FW10%M = 0.23 mm
 - Ideal for crystals showing strong absorption or extinction
 - Ideal for high-resolution data sets and de-novo phase determination using high-pressure cells

• Cu-I\(\mu\)S powerful allrounder for Small Molecules, Proteins and Material Research
Acknowledgement

• The Göttingen people:
 - @ IAC: T. Schulz, D. Stalke
 - @ GWZ: F. P. A. Fabbiani

• C. Hauf, G. Eickerling, W. Scherer, University of Augsburg

• A. Dreier, C. W. Lehmann, Max-Planck-Institut, Mülheim

• Th. Malcherek (Hamburg), R. Seidel (Bochum)

• The Bruker AXS people:
 - R. Durst, M. Ruf, H. Ott, D. Stern, M. Nüsse

• The Incoatec people
THANK YOU

Chemistry Dep., Univ. Goettingen

Institute Le Bel, Strasbourg

Incoatec GmbH
www.incoatec.de
info@incoatec.de

Novartis AG, Basel

MPI, Stuttgart

Biozentrum, Univ. Basel

Sanofi Aventis GmbH, Frankfurt

Materials Center Leoben, Leoben

Jürgen Graf – Karlsruhe 2010
Please contact for more information:

Incoatec GmbH
Max-Planck-Str. 2 • 21502 Geesthacht • Germany
Tel: +49(0)41 52 - 88 93 81 • www.incoatec.de